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ABSTRACT

We constrain the velocity spectral distribution of global-scale solar convec-
tive cells at depth using techniques of local helioseismology. We calibrate the
sensitivity of helioseismic waves to large-scale convective cells in the interior by
analyzing simulations of waves propagating through a velocity snapshot of global
solar convection via methods of time-distance helioseismology. Applying identi-
cal analysis techniques to observations of the Sun, we are able to bound from
above the magnitudes of solar convective cells as a function of spatial convective
scale. We find that convection at a depth of r/Ro = 0.95 with spatial extent
f < 30, where t is the spherical harmonic degree, comprise weak flow systems,
on the order of 15 m/s or less. Convective features deeper than r/Ro = 0.95 are
more difficult to image due to the rapidly decreasing sensitivity of helioseismic
waves.

1. Introduction & Methodology

Constraining the length-scales and velocities of solar interior convection is an important
step towards testing and improving models of astrophysical convection. In this regard, two
observational efforts have received much attention: the detection of the elusive giant cells
(e.g. Brown & Gilman 1984; Chiang et al. 1987; Wilson 1987; Beck et al. 1998; Featherstone
et al. 2006) and a study of supergranulation and near-surface convection (e.g. Zhao & Koso-
vichev 2003; Woodard 2007). Despite these numerous investigations, neither have giant cells
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been conclusively observed, nor have the flow systems beneath supergranules been convinc-
ingly imaged. In particular, the inversions for supergranular flow are highly susceptible to
the systematical issue of cross-talk, a situation where different velocity components possess
similar signatures in the observed time shifts. Questions relating to bounds on the degree of
detectability of large-scale convection are also not new (e.g. van Ballegooijen 1986; Swisdak
& Zweibel 1999; Hanasoge et al. 2007b).

The Anelastic Spherical Harmonic (ASH) simulations of solar convection in a spherical
shell have provided us with a computational picture of the dynamical appearance, evolution,
and disappearance of giant convective cells (Miesch et al. 2000). These simulations encompass
a large fraction of the solar convection zone, spanning 0.7 R,^ to 0.98 R O . Because of the
large disparity of time scales between the upper and lower regions of the convection zone,
Miesch et al. (2000) invoke the anelastic approximation (Gough 1969) to render the problem
computationally tractable and to limit the computational cost. The anelastic formulation of
the Navier-Stokes equations disallows acoustic waves; since it can only capture the dynamics
that are subsonic, the domain of computation is truncated at 0.98 Ro because the near-
sonic and supersonic fluid motion contained within the near-photospheric layers of the Sun
would not be realistically captured. In spite of the use of physically unrealistic boundary
conditions (i.e. impenetrable walls at the upper and lower radial boundaries), and parameters
(e.g. Prandtl, Rayleigh, and Reynolds numbers) that differ markedly from those describing
the Sun, these models provide the best indications at present of what transpires in the solar
convective interior.

Acoustic waves are our primary source of information about the optically thick solar
interior. Therefore, in order to begin the task of understanding the influence of convection
on the waves, we insonify the ASH simulations and characterize the impact of the convective
velocities on the wave-field statistics. In order to accomplish this, we employ the forward
modeling techniques of Hanasoge et al. (2006), who have devised a computational means of
studying the impact of thermal and flow perturbations on the acoustic wave field. We place
a velocity snapshot of the convection zone from an ASH calculation in a solar-like stratified
background and simulate wave propagation through this complex medium (cf. Figures 1 and
2 of Miesch et al. 2008). We apply the method of time-distance helioseismology (Duvall et al.
1993), which primarily utilizes temporal correlations of velocity signals at spatially disparate
points in order to construct the statistics of the wave field. In particular, we use the technique
of deep focusing (Duvall et al. 2001), which relies on an elegant choice of observation points,
leveraged in a manner so as to optimize the imaging capability, as illustrated in Figure 1.
This method allows us to image the three components of the background velocity field, i.e..
the latitudinal, longitudinal, and radial velocities.
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Fig. 1. A pictorial representation of deep-focusing time-distance helioseismology. Numer-
ous waves, denoted here by rays, that intersect at r1Ro = 0.95 are utilized in order to image
flows at that depth (shown by the horizontal curved dashed line) and that horizontal loca-
tion. The signal associated with the waves is measured at the solar photosphere (depicted
by the horizontal curved solid line)

2. Convection Snapshot & Wave Calculation

For purposes of discussion, we adopt a spherical co-ordinate system, using symbols r, A,
and 0 to denote radius, latitude, and longitude respectively. Slices at three radii correspond-
ing to r = 0.714Ro, 0.85R (; , 0.979RO are extracted from an ASH simulation of solar spherical
convection (Miesch et al. 2008). Each slice consists of 2048 x 1024 longitudes and latitudes
respectively, with the highest spherical harmonic degree being fASx = 683. Note that the
number of latitudes and the maximum spherical harmonic degree are chosen to satisfy the
relation nl,,,t > UASx /2 in order that the simulation be stable against aliasing instabilities.
We linearly interpolate between the three slices to obtain a smooth velocity field as a func-
tion of radius. The depth variation of the RMS variations in the velocity components is
plotted in Figure 2(a). In panel (b), we plot the maximum wavenumber of 3.5 mHz waves
that penetrate a given depth (i.e., the inner turning points of the waves); this is roughly es-
timated as ff" = cur f c, where w is the angular frequency (= 27 x 0.0035) of the waves, and
c = c(r) is the sound speed. Because the imaging resolution is on the order of a wavelength
(e.g. Gizon & Birch 2004), we are unable to detect convective features of scale f > fmax at
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that given depth. In the discussions that follow, we study the properties of convection at
a depth r f R.v = 0.95, this layer being moderately distant from the upper boundary of the
ASH simulations but not so deep that helioseismic analyses become noisy. From the curve
in Figure 2(b), we determine that f"'(0.95R O ) — 185, implying that convective features
with f > 185 are not detectable at this depth. Thus, to moderate the computational cost,
we filter the velocities in the spherical-harmonic domain so as to only retain wavenumbers
f < 256 and then resample the data on to a grid of 768 x 384 longitudes and latitudes.
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Fig. 2. The velocity magnitude distribution of the three interpolated velocity components
derived from the ASH simulation as a function of depth (panel a). Longitudinal averages
of the components ((vr ), {VA), (vo)) have been subtracted from the velocities. The curve
f-ax (r) in panel (b) is the maximum wavenumber of 3.5 mHz that penetrate to that depth;
because the imaging resolution is on the order of a wavelength, we are only able to image
features that obey f < f ax

(r); we also have f,ax (r) 185 at rIR = 0.95.

Having thus generated a 3-D cube of the convective velocities, we place it in a solar-like
stratified spherical shell that extends from 'r/R., = 0.24 to r f Ra = 1.001, and propagate
waves through this medium according to the numerical recipe described in Hanasoge et al.
(2006). We solve the 3D linearized unsteady Euler equations describing wave propagation in
spherical geometry in a temporally static background medium (in this case, the stratification
and the convective velocities are constant in time). The waves are generated by determinis-
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tically forcing the radial momentum equation at a depth of approximately 100 km below the
photosphere. Subsequently, a time series of the oscillation velocities are extracted at a height
of 200 km above the photosphere and used as artificial data for helioseismic investigations.
We also apply the technique of noise subtraction (Hanasoge et al. 2007a) in order to obtain
gains in the signal-to-noise ratio (SNR); two simulations are performed, one being a quiet
calculation and the other with the convective velocity snapshot, both with identical source
functions. The wave statistics of the former are subtracted from the latter, and the high
degree of correlation between the two data sets results in a gain in the SNR and also a more
direct view of the scattering process. Note that this is a luxury limited entirely to theoretical
calculations and no observational analog exists (as yet).

3. Time-Distance Analyses & Caveats

Time-distance measurements have primarily been made using cross correlations con-
necting points with a common surface focus (Duvall et al. 1996). This is most appropriate
for studying near-surface phenomena, although, as Giles (2000) has shown, it is possible to
use that type of geometry to study very deep axisymmetric perturbations. A second type
of geometry using cross correlations from pairs of points at opposite sides of a circle (Duvall
2003) would seem to be more appropriate for focusing on deep phenomena, although differ-
ent distances then have common points at different depths. In a slightly different technique,
adopted by Rajaguru (2008), averages of signals over a quadrant of a circle are cross cor-
related with the signals at the opposite quadrant. A possibly superior approach is to cross
correlate a number of pairs of points whose connecting ray paths all converge at a subsur-
face focus (Duvall 1995). This method is computationally expensive and although it would
appear to be ideal, it was shown by Duvall et al. (2001) that the Born sensitivity kernel
corresponding to this geometry actually has a hollow sphere about the focus point. This is
consistent with the banana-doughnut nature of the two-point kernel, with zero sensitivity
along the classical ray path (Marquering et al. 1999; Birch & Kosovichev 2000).

In the present study, the latter form of deep focusing is used. At each point on the map,
the input datacube is interpolated onto a spherical polar coordinate grid with the surface
projection of the focus point placed at the north pole. The grid is computed in co-latitude
from the pole (or focus point) to the largest angular distance needed for the computation.
The resolution in co-latitude is the same as for the input data. The grid contains an equal
number of longitudinal points at each latitude, making it easy to compute cross correlations
between pairs of points on opposite sides of the focus point at different colatitudes. A ray
calculation determines which pairs of points are to be used in order to focus on the desired
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subsurface location. The extent in co-latitude is restricted by requiring that the rays lie
within 45° of the horizontal tangent plane at the focus depth. In effect, this limits the
distance of the antennae from the focal point.

The three travel-time maps obtained subsequently can be interpreted to relate to the
flows in the following manner: divergence time shift maps (TZO ) correspond to radial flows,
north-south time-shift maps (Tns ) correspond to latitudinal velocities (VA) and the east-west
time-shift maps (TE,,,) to longitudinal velocities (v¢). As is seen in Figure 3, there is a
significant resemblance between the convective velocities at depth and the associated deep-
focusing time shifts. In particular, the correlation between the east-west time shifts and
the longitudinal convective velocities is at the level of 70%; latitudinal velocities are also
strongly correlated with the north-south time shifts, at the level of 60%. The radial flows,
significantly weaker than the other components, do not register quite so well in the travel
times.

We now calibrate the shifts in travel times directly to the convective velocities at the
focus depth (r/R D = 0.95) of the waves. We transform the velocities and time shifts into
spherical harmonic space and perform a linear fit between the real and imaginary harmonic
coefficients of the velocities and time shifts as a function of the bandpass (or spherical
harmonic degree, f). We graph this sensitivity in Figure 4. This calibration allows us
to determine the induced time shift by a convective-cell-like feature at depth; thus the
observationally derived time shifts may be "inverted" in order to determine the convective
velocity. A notable aspect of Figure 4 is that the imaging resolution (defined as the half-
width) as suggested by the curves, f — 30, is far smaller than f"' — 185 at this depth
(r/Ro = 0.95).

Caution must be exercised when interpreting this calibration process, primarily because
the convection model we employ is greatly simplified, and is likely not very comparable to the
complex solar medium. In particular, we must keep in mind that: (1) the sensitivity model
of the waves has not been carefully- investigated; thus, despite using this intricate focusing
geometry, we possibly still retain considerable sensitivity to the near-surface layers (e.g.
Figure 4.13 of Birch 2002), (2) we do not model the action of the near-surface convection on
the waves, thereby not incorporating a significant source of wave scattering. (3) we linearly
interpolate the convective velocity data in depth between the three available slices, thereby
further reducing the complexity of the interior convection model, and (4) the solid-wall upper
boundary condition applied in the ASH convection simulation leads to unrealistic convective
velocity profiles, especially around r f Ro = 0.979.
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4. Observations & Conclusions

A deep-focusing analysis of one day's worth quiet Sun observations of MIDI medium-P
data (Scherrer et al. 1995) shows no indication of the presence of larger-scale convective
features. The time shifts are dominated by noise. Furthermore, the correlation coefficient
between time-shift maps of one day and the next (corrected for rotation) is too small to be
regarded statistically significant. Similar to the work of Braun & Birch (2008), we utilize
this non-detection to constrain the magnitudes of the convective velocities from above. The
first step is to obtain highly precise estimates of the level of noise present in the travel times
extracted from the analysis of one day's observations. MDI medium-f data from the two-year
quiet period October 2007 - October 2009 are analyzed and twenty-four synoptic charts of
the travel-times corresponding to as many Carrington rotation periods are constructed. The
spherical harmonic spectra of these maps are averaged, and this average spectrum is then
multiplied by length of the time window (2 years) leading to precise estimates of the noise as a
function of spherical harmonic degree. These expectation values for the noise are then divided
by the calibration function of Figure 4 to obtain an upper-bound estimate for the convective
velocities (Figure 5). In other words, the noise-dominated time shifts are converted to
velocities, with the implication that the magnitude of the interior solar convective velocity
spectrum can be no greater than suggested by the curve in Figure 5, failing which large-scale
convective cells become detectable within this observational window. As seen in the figure,
the constraints place tight restrictions on the convective velocities, especially at low spherical
harmonic degree. Giant cells at depth, if they exist, have small velocity magnitudes, on the
order of 15 m/s  or less, underscoring the remarkable challenge in actually detecting them.
Also plotted is the longitudinal convective velocity spectrum obtained from a 62 day average
of the ASH simulations, these velocities are seen to be of much greater magnitude than
suggested by the observations.

The simulations presented here were performed on the Schirra supercomputer at NASA
Ames. S.M.H. would like to extend warm regards towards P. Scherrer for supporting a visit
to Stanford over which some of the work was accomplished. We would also like to thank M.
Uliesch for sending us the ASH data used in Figure 5 and J. Toomre for helpful comments.
S.M.H. acknowledges funding from the German Aerospace Center (DLR) through grant FK
Z 50 OL 0801 "German Data Center for SDO" and the Princeton University Department
of Geosciences. T.D. appreciates funding from NASA and the continued hospitality of the
Stanford Solar Group.
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Fig. 3. Comparison of flows at a depth of r/Rv = 0.95 and deep-focus travel time differ-
ences (configuration shown in Figure 1). The left column shows the flows from the simulation:
from top to bottom, the radial (v,), north-south (v,\ ) and east-west (vo) components at r f Ro
= 0.95. Travel time differences corresponding to these three components are shown on the
right-hand column: from top to bottom, the difference between the ingoing and outgoing
travel times (Ti,), the north-south travel-time asymmetry (rns ), and the east-west travel-time
asymmetry (7,,,). The correlation coefficients between the flows and travel time maps is 0.17
for the radial, 0.59 for the north-south, and 0.69 for the east-west cases. The spatial cross
correlations between the travel-time and velocity maps have a full-width at half-maximum
of 9 deg for both the north-south and east-west cases.
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Fig. 4. A measure of the imaging resolution of helioseismic waves. For example, a convec-
tive cell with horizontal velocity amplitude 100 m/s  and dominant spatial power in P = 1 will
elicit approximately a 3 second shift in the travel times as measured by this deep-focusing
technique. Similar interpretations apply to convective features at higher f. Finer-scale fea-
tures at this depth, i.e. those characterized by e > 50, register much more weakly in the
travel times. mote that these curves suggest an imaging resolution of f — 30 (defined as the
half-width), far smaller than the f"' — 185 at this depth (r1 RO = 0.95).
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Fig. 5.— Upper bounds on the velocity magnitude spectrum of interior convection (with
differential rotation and meridional circulation removed). The variance (noise) of the time
shifts derived from a deep-focusing analysis of 1 day's worth MDI medium-f quiet Sun data
is converted to velocity using the calibration curve in Figure 4. Based on the non-detection
of convection, these form upper bounds on the velocities of convective cells. Giant cells at
depth, if they exist, must therefore be of velocity magnitudes of the order of 15 m/s  or less,
making them very difficult to detect. Also plotted are spectra obtained from a 62 day average
of the longitudinal and latitudinal convective velocities at r f Ro = 0.92 (Figures 13b and c
of Miesch et al. 2008). dote that the velocity magnitude increases as a monotonic function
of r1 RO , implying that the ASH velocity magnitudes are even higher at r/Ro = 0.95.


